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ABSTRACT

An idealized problem is investigated which illustrates the role of wave-
particle interactions in the evolution of runaway beams. The model considers
the interaction between a weak cold beam, driven by an external static
electric field E, and waves quantized by the geometry. The waves may corres-
pond to Gould-Trivelpiece modes fixed by the length of the experimental device,
or to the finite Fourier modes encountered in computer simulations. The
physics consists of the sweeping of the accelerated beam through the resonance
provided by each cavity mode. This process is formulated in analogy with the
O'Neil, Winfrey, Malmberg (OWM) problem but uses a spatially averaged descrip-
tion based on the exact energy and momentum conservation laws with the dynamics
simplified through a WKB representation of the dispersion relation. This model
shows that the beam can be clamped in velocity with the momentum push being
transferred to the waves. The model has been extended to the relativistic and
multi-mode cases. For E = 0 the nonrelativistic results are in good agreement
with the work of (OWM), while in the relativistic case the model reproduces the

nontrivial features of the computer study by Lampe and Sprangle.
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I.  INTRODUCTION

One of the more striking properties of hot tenuous plasmas is the virtual
disappearance of collisional effects. A well known consequence of this behav-
ior is the creation of runaway electrons! when a sufficiently strong external
DC electric field is applied to a plasma. Although various aspects of this
process have been extensively investigated, there has been a recent resurgencez'“
of interest in this topic. The reason for the renewed interest can be attrib-
uted to tne successful operation of toroidal confinement devices capable of
entering the hot plasma regime while providing sufficiently long confinement
times so that a runaway population can be established.

The study of the properties of electron runaways is of interest because
it provides an ideal arena for testing and developing various theoretical des-
criptions of fundamental wave-particle interactions which can have important
consequences beyond the narrower realm of the runaway problem. On the more
practical side, a better understanding of the behavior of runaways may be used
as a diagnostic tool for uncovering internal phenomena (e.g., magnetic pertur-
bations, transport, instabilities) not directly accessible to the standard
diagnostic methods. Also, it may be possible that in certain parameter
regimes the large streaming energy of the runaway electrons can be used to
generate powerful microwave radiation, or even to achieve the direct heating
of the background ions.

The motivation for the present study has been provided by the recent
experimental observations® made in the Microtor tokamak at the University of
California, Los Angeles. By monitoring the time evolution and energy of the
hard x-rays (>50 KeV) emitted from this device one deduces the maximum energy
of the runaway population. At intermediate values of the plasma density
(n, = 2 X 1012 - 10'3 cm~3) it is found that the maximum energy of the

runaways increases monotonically in time during the discharge, eventually
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reaching levels as large as 2-3 MeV. However, in the low density regime
(n, < 10!2 cm-3) it is found that the maximum runaway energy attained holds
constant in time (5-10 msec) during a significant fraction of the discharge
lifetime (20-30 msec). The peak energy achieved by these clamped runaways
is of the order of 300-400 KeV.

Simultaneously with the clamping of the runaways it is observed that
electromagnetic radiation in the neighborhood of the ion plasma frequency,
wpi' is generated. Spontaneous emissions near the electron cyclotron fre-
quency, Qe’ and electron plasma frequency, wpe’ are also detected® and are
present in both density regimes, i.e., the high frequency emission is
triggered whether or not the runaways are clamped in energy. However, the
lower frequency radiation is only present when the clamping process is at
work, and the peak of this emission occurs at a frequency which scales
proportionally to /E;.

Evidently, such an interesting behavior in the complicated environment
of a tokamak plasma can stimulate a wide variety of explanations. In partic-
ular, a simple physical picture suggested by these observations and whose
interest goes far beyond the previously mentioned experiment is the following:
a high energy electron is pushed directly by the external DC electric field,
however, if the electron can resonate with a mode supported by the system
then a significant part of the push may be transformed to the form of wave
momentum, thus resulting in the clamping of the particle. This type of
phenomenon is the subject of the present study.

Specifically, this study is concerned with the evolution of a low density
beam which is continuously accelerated by an external DC electric field. The
beam is envisioned to meet the criteria for the weak cold beam description’:8

used extensively in investigations of the beam-plasma interaction. The beam
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is assumed to propagate along a strongly magnetized plasma capable of support-
ing modes whose wavenumbers are quantized by the geometry. The consideration
of such modes is relevant to the low frequency (w << wpe) oscillations in
small toroidal machines in which an integral number of wavelengths fit around
the torus. A similar situation is also encountered in computer simulations in
which the periodicity length introduces the quantization of the Fourier modes.

The mathematical formulation used in the present study does not follow
the detailed dynamics of the beam particles,which would require a computer
simulation. The method used here relies on the exact conservation equations
for the total energy and total momentum of the beam-wave system. To bypass
the complexity associated with the simulation of beam dynamics, a WKB model is
introduced. The foundations of this model can be traced to two previous
unconnected investigations whose essence is briefly described in the following.

Several years ago? O'Neil and Malmberg studied the topological transition
in the linear dispersion relation for the cold and warm beam-plasma interaction.
In analyzing the transition from a cold to a warm beam, it proved useful to
consider a two parameter Lorentzian to represent the beam distribution function.
One parameter describes the average velocity of the beam, while the other
represents its thermal spread. The results obtained with this parametrization
of the problem illustrated clearly the continuous transition from a hydrodynamic
instability to a kinetic Landau-type of interaction.

The other investigation which has a bearing on the foundations of the WKB
model used here concerns a laboratory experiment10 by Starke and Malmberg. This
experiment has looked in detail at the connection between the well-known
trapped particle sidebands excited by a launched large amplitude wave and the
distortions in the time averaged velocity distribution function. The remarkable

outcome of this experiment is that the behavior of the spontaneously excited
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sidebands can be explained quantitatively by using the time averaged distribu-
tion to obtain a local linear dispersion relation.

The clues that have been extracted from the two previously described
results to solve the present problem are: (1) the thermal spreading of the
runaway beam which occurs as the beam encounters a cavity resonance can be
reasonably descrived through a two parameter Lorentzian; the two parameters
being allowed to change seif-consistently with the conservation laws, (2) to
bypass the calculation of the dynamics of the beam particles, one uses the
slowly changing Lorentzian into the linear dispersion relation to obtain the
time evolution of the wave energy and momentum.

To check the validity of the previously described formulation we have
tested its predictions against the detailed particle simulation of the weak
cold beam problem by O'Neil, et al.® It is found that the spatially averaged
technique!! introduced in this work predicts the correct saturation time; the
predicted saturation level does not exhibit the trapped particle oscillations
(as expected) but rather it yields an average value which ranges between the
peaks and the valleys of such oscillations.

When the effect of the external DC field is retained, one finds that for
certain parameter values (e.g., the amplitude of the initial noise is small)
the runaway beam can sweep through a cavity resonance and experiences only a
slight drag and a correspondingly small thermal broadening. However, as the
level of the initial noise is increased one finds that the beam momentum can
be clamped. In the clamped state the beam momentum increases slowly while
the amplitude of the cavity mode grows secularly in time. In this regime the
external push by the DC field is converted into wave momentum (DC to AC

conversion).
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The spatially averaged formulation has been extended to include the many
mode problem as well as the relativistic runaway case. The clamping behavior
is also observed when these effects are present. The predictions of the
relativistic formulation with the DC field set to zero have been compared
with the computer calculations!? of Laﬁpe and Sprangle. It is found that one
recovers the known but nontrivial decrease of the saturation level as the
parameter s, first introduced?3 by Thode and Sudan, is increased. In addition,
one finds that the actual dependence on s is in excellent agreement with the
results of Lampe and Sprangle.

The investigation of the restricted runaway beam interaction with two
modes exhibits a wealth of structure that uncovers many features which have
been previously observed in the laboratory!®»14,15 in the study of trapped
particle sidebands. Many of the features can be understood in terms of wave-
particle-wave interactions in which the beam plays the role of an intermediate
agent.

The manuscript is organized as follows. In Sec. II the problem is
defined and the spatially averaged formulation is introduced. Section III
discusses the application of the formulation to the weak cold beam problem.
Section IV presents the nonrelativistic results and introduces the clamping
behavior. Section V considers the relativistic formulation. Section VI
presents a perturbation theory of the effects produced by cavity damping.

Conclusions are presented in Sec. VII.




II. FORMULATION

The present idealized physical model consists of a low density beam
(initially cold) which is pushed by an external DC electric field Eo that
points along a strong magnetic field Bo. The plasma is taken to be a cylinder
of radius a, surrounded by a p.zrfectly conducting wall. For simplicity the
plasma density ng is taken to be radially and axially uniform, and the plasma
cylinder is envisioned to be axially periodic, with periodicity length L.
The strong guide magnetic field points along the axis of the plasma cylinder
(z axis).

In the strong magnetic field limit (Bo + =), as has been illustrated!®
by Trivelpiece and Gould, the dispersion relation for the electromagnetic

modes (E modes) can be solved analytically and is obtained from

2 e, >
wiE, ¢ &2 - ke B =0 (1)

where Vf refers to the perpendicular Laplacian operator, ko = w/c corresponds
to the vacuum wavenumber of a signal having frequency w, and ¢ is the speed
of light. The axial component of the dielectric tensor is €.,

The solution of Eq.(l) takes the form
Ez(z,r,e,t) = AJn(klr)exp{i(kz +n6 - wt)} (2)

in which r,8 represent the radial and angular coordinates, t is the time
variable, k is the axial wavenumber, A is the amplitude, Jn is the Bessel
function of order n, and n is an integer.

The finite size constraints of the model require that

¢ 2
k=ji , ka=P (3)
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where j is an integer and an refers to the zeroes of Jn. Utilizing these
constraints one arrives at the following linear dispersion relation

(P J*

®22 * K a)2-(ka)Z 4

It is well known that in the absence of the beam and for a cold background
i plasma, Eq.(4) exhibits two branches: (1) the fast branch consists of waves

whose phase velocities are larger than c¢ and exists for frequencies w > wpe
(the electron plasma frequency), (2) the slow branch has phase velocities
less than ¢ and exists in the frequency interval w < wpe' It is this latter
branch which is of interest to the present problem because it is possible for
the velocity of the beam to coincide with the phase velocity of these modes,
thus resulting in a strong resonant interaction.

The contribution of the low density beam to the finite size dispersiun

relation enters through the beam susceptibility Xb, where

(5)

)
€22 Cgy 2 Xb

and in which egz represents the contribution of the background plasma.

Defining the generalized finite size dielectric of the system e by

" 1 B
= - (
e (koa)z-(ka)? (6)
results in the relation

elk,w) = - Xb (7)

which for a low density beam can be treated in analogy with the small cold
beam problem , i.e., in zeroth order s(k,wo) = 0, hence the perturbation
produced by the beam can be described through w = o Sw, IGm/w°|<<l,

and 8w is determined from
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with the understanding that Xb depends functionally on Sw. Once the depend-
ence of Xb on 8w is established, Eq.(8) can be used to obtain Sw, whose
imaginary part determines the growth or damping of the cavity mode supported
by the background plasma. In the present work Eq.(8) is used in its general-
ized WKB sense, i.e., one calculates the slow time evolution of Xb = Xb(t,Sw).

In general to find X, one needs to follow the detailed dynamics of the

b
beam electrons. To extend such an exercise beyond the linear regime one
typically resorts to a digital computer in order to calculate the complicated
trapped particle orbits. However, in the present study we wish to avoid such
a procedure by relying on a spatially averaged description based on the exact
conservation laws for the beam-wave system.

The derivation and meaning of the conservation laws are easier to under-
stand if one represents the beam in terms of N discrete particles. Each

particle is labeled by the index 2, 1 < & < N, and in the nonrelativistic

limit their motion is determined by

LT (vzz) = eEo - e { E(t)Jn(klrQ)exp[i(kzl + nod -mot)]+ Culcy 9)

2

in which e, m refer to the electron charge and mass, Vv is the axial component

z4

of the velocity of particle % with coordinates (zz, 62, rz), and
t 7
E(t) = EZ(O)exp [- i J dt'6w(t‘)J (10)
o

with éw complex.

After Fourier analyzing in time, Maxwell's equations take the form

2
TxVxE=id% e (&)E (11)
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where j refers to the oscillating plasma current, which in the strong Bo limit

points essentially in the z direction. Accordingly,
2
(Vx9xE), =-VE +3.(,  E) (12)
and
3,E, + 7y + Ej =dmp (13}

where p refers to the oscillating electron charge density. Using Egs.(12)

and (13) in Eq.(11) yields

2 2 ;
2 W, = i idmw .
lez * azEz " (c) Ez 4"azp c 2 (14)
Operating on both sides of Eq.(14) with
L/2 (21
dz | de6 :
J T JOEF exp[-i(kz + ne)] (15)

-L/2

and using the conservation of charge constraint together with the periodicity

requirement along z results in
VZE + (k2 - kK)E. = - i & 2 _ k25 (16)
172 o z k (6]

where the bar notation over Ez’ p refers to the Fourier transformed

quantities over z and 6.

The quantity p contains the contribution 3; arising from the background

particles (which are assumed to behave linearly), as well as the contribution

55 due to the beam particles, i.e.,

G ST -
pwas (B E b (17)
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Inserting Eq.(17) into Eq.(16) and integrating over the radial coordinate
with the appropriate weight functions results in
a —_—
v,E
rdr 17z 0=
. fo az D (e * ok )

(18)

N
i 5%3 (;9) §=1 J [kt (t) Jexpl-i[kz (t) + no (t)]}

where ny represents the density of beam electrons.
For low density beams (i.e., nb/n° << 1) the left-hand side of Eq.(18)

vanishes to zero-order in 8w, thus yielding the solutions described by Eqs.(2)

and (4). To account for the interaction between the beam and the cavity mode

one must retain the first order contributions in 6w which arise in the left-

hand side of Eq.(18), namely

a
(2k _/c) 3¢
rdr 0 o= 2z =
2 J;EY Jplkyr) | - [GEBE: Vafy ™ T Tl e (19)

where it is understood that the terms inside the brackets are evaluated at
W= W, i.e., the unperturbed frequency of the cavity mode. Since the zero
order Eqs. (1) and (4) are satisfied identically, the expression in Eq.(19)

takes the form

2(k°a)2 egz 2 Begz :

e sl | o 4k g [Jn+l(k1a)]6m(t)E(t) (20)
nv

Using the generalized dielectric ¢ defined in Eq.(6) one finally arrives at

the equation governing the time evolution of E(t)

41renb

o€ 9 d = .
(szo[Jn+l(kla)] EEE T Jn(klrg)exp{-l(kzz+nel—wot)} (21)

To obtain the time evolution of the total momentum of the system one

returns to Eq.(9) and sums over &, making use of Eq.(21), to yield




-12-

< m) =+ KGD 92, (K, a)](l;l~)> = enE, (22)

which states that the total momentum of the beam-wave system is increased by
the presence of the external DC electric field.

In calculating the conservation of energy relationship it proves useful
to introduce the relative coordinate EQ =z —(wo/k)t and the associated
velocity él' Multiplying both sides of Eq.(9) by él and summing over all
beam particles yields

P
il. WED

a?zl —| = esogéz - e% E(t)éan(klrg)exp[—i(k€2+nel)]+c.c. (23)

but in the strongly magnetized limit
. - o ad b
Eﬁlexph(kEZmGQ)]Jn(klrz) o % % J_(kyr)exp[i(kg +no, )] (24)

using Eq.(21) this expression becomes

1 d Nk
ik dt [4nenb ( ) Jne1(ks8) dt a5, )

Inserting Eq.(25) in Eq.(23) and recognizing that
d? d2 d
Egqpef* ~E* B -5 [2Re (6w) |E| 2] (26)
where Re refers to the real part, results in
d m(E,)? IE |2 £,
dat bz 2 + 2Re(Sw) (_)J2+1(k a) = enbz N EO (27)
L

which states that the time rate of change of the total energy of the beam-

wave system is equal to the power delivered by the DC electric field.
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Equations (22) and (23) are the exact conservation laws for the runaway
beam-cavity interaction used in the present work. Similar expressions have
been found previously in the discussion of the weak cold beam problem, both
in the nonrelativistic® and relativistic!” cases, and also in the calculation
of the nonlinear frequency shiftl® due to particles trapped by an electron
plasma wave. In the latter study it has been shown that to lowest order, the
conservation of momentum regulates the damping or growth of the wave, while
the conservation of energy requirement produces phase changes in the wave. In
the present work both of these effects play a crucial role in determining the
evolution of the runaway beam. For completeness, it should be mentioned that
quasilinear theory retains only the effects associated with momentum changes
and completely neglects the phase changes introduced by Eq. (27).

As can be seen from Eqs.(22) and (27) the conservation relations depend
on two spatially averaged properties of the beam, i.e., the average velocity
ZEZ/N, and the average of the squares of the velocity %(EQ)Z/N. If one finds
%he time evolution of these quantities then the behavior of |E|2 and §w can
be determined. Such a procedure can be implemented if the orbits of the beam
particles are known. In the case of a launched large amplitude wave this
method of calculation has been implemented analytically,!®:1% while in the
small cold beam problem the orbits have been calculated numerically.® 1In the
present work we are interested in using the conservation equations in the
reverse order. Essentially the idea is to determine §w and |E|2 first, and
then use the conservation laws to extract the previously mentioned averages.
Of course, such a procedure must be self-consistent thus implying that a
method of closure must be implemented.

In order to calculate Sw(t) from Eq.(8) one needs to know Xb(t,Gw).
Physically, one expects that as the runaway beam passes through a cavity

resonance its average velocity is altered and simultaneously it acquires a
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certain thermal spread. This implies that the initial cold beam is slowly
transformed into a warm beam which suffers a recoil due to the fact that it
excites a cavity mode. Thus one must deal with the transition from the hydro-
dynamic interaction (two-stream) to the kinetic interaction (Landau type).
O'Neil and Malmberg have investigated the details of such a transition in
the purely linear regime, and have found that it is extremely useful to

parametrize the transition by means of an equivalent beam succeptibility

e
= -
Xy (okv +1KkV) 2 (28)

where w;b = mge(nb/no), vy is the average velocity of the beam and v repre-
sents the average thermal spread. In the limit v = 0, Eq.(29) reduces to
the cold beam result, while for v # 0 this succeptibility can be identified
with a beam having a Lorentzian distribution.

The closure procedure consists of using Eq.(28) in its WKB sense, i.e.,
L vb(t) and v = v(t), thus describing a slowly changing beam which under-
goes a transition from cold to warm as it interacts with the cavity mode.

To make the scheme self-consistent one relates vy and v to the spatially

averaged quantities appearing in the conservation laws, namely
.2 1 ézz T 1/2

o St . .
vb(t)-gﬁ-.v(t)-f I - E (29)

With Eq.(28) the WKB (in time) dispersion relation takes the form

e (My/n,) B
[Sw(t) kv, (t)+ikv(t) ]2 (30)

ES)su(t) =

and with the understanding that v, is measured relative to the wave frame.

b

Introducing the following scaling




§8~
o nb //Be 1/3
= [w;e (B—o- T
w = 8w/, t=2Qt
p = kvb/n, S = kv/Q
(31)
u = {kz(%&)Jﬁﬂ(kla)lE["’] / (4mmn, 9)
Fade (‘_“_z) ¢
2N 2 Q
& = (ekE )/ (ma?)
one obtains the scaled equations of the problem
.d_ ( + = é' 32
at P u) = (32)
& [k + 2Re(w)u] = &p (33)
ww -p+ iS)2 =1 (34)
s =1 (x-p)? (35)

The simplification achieved by the spatially averaged description becomes

evident by integrating Eqs.(32) and (33) directly

p(x) = Ex - u(r) - [p(0) + u(0)] (36)
T
K(t) = 2Re[w(t)] + Idt'p(r') - 2Re[w(0)]u(0) (37)
0
with
i 4
u(t) = u(0)exp{2 Idr'lm[w(r')]} (38)
0

and realizing that w(t) can also be obtained in closed analytic form from

Eq.(34) by means of the well-known?? formula for the roots of a cubic

. i
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equation (not worth writing out in detail here). The latter simplification
follows from the choice of Eq.(28), other methods of closure yield more compli-
cated expressions. In practice the solution to the present problem reduces
essentially to solving a set of coupled algebraic equations which can easily be
done with very little computing effort.

It should be noted that the procedure used in generating Eqs.(32)-(35) can
be implemented for many modes. In this more general case the resulting equations

are slightly changed to the form

Sz falr e

%T- K + E[Gk + 2Re(w) 10w ) = Ep (40)

wk[wk = (p-iS)/)«k + Gk]z = Dy (41)
: \

g = uk(O)exp Zfodr'lm[wk(r')]f (42)

In scaling Eqgs.(39)-(41) one selects a certain wavenumber kl’ perhaps

corresponding to the mode of principal interest to the problem, and defines

g = mz n—b— / 3_5_ 1/3
~ | pe n, 3w 4
W = Gmk/ﬂ‘ v T = Qit

>
I

k 3 (kllk) s Gk - (wk iy ml/)‘k)/ﬂ'
(43)

. p= klvb/Q' , S = klv/Q'

d€ €
D, = (3 / (=
k w X w 1
2 2
4 kkl(ae/am)kJn+1(kxa)|Ek|

U © 4wnbmn'
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where (aelaw)k refers to (38e/dw) evaluated at the unperturbed frequency of
mode k, i.e., Wy - It is clear that for k = kl the expressions in Eq. (43)

reduce to those of Eq.(31). 1
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I1II1. THE WEAK COLD BEAM SATURATION

It is clear that the spatially averaged description neglects a variety
of single particle dynamical effects which have been found to play an impor-

7,8 of the beam-plasma interaction.

tant role in previous investigations
Outstanding among these is the trapping of the beam by the fastest growing
linearly unstable mode. The trapping effect saturates the hydrodynamic
instability and causes periodic oscillations of the wave amplitude. Physic-
ally, the trapping process causes the cold beam to acquire a velocity spread
which in turn stops the growth and produces the temporary damping of the
wave. However, due to the strong coherency of this system the velocity
spread is only partially randomized. Accordingly, a significant fraction

of the fake heating is reversible and manifests itself in the regrowth of
the wave. This sequence of events repeats cyclically until the system
phase mixes or other processes occur which make the beam heating practically
irreversible.

The spatially averaged description can handle the effects associated
with the increase in the velocity spread. However, the model intrinsically
assumes that the velocity spread is an irreversible process. Consequently,
the model can not reproduce the trapped particle amplitude oscillations,
instead it gives an answer which is an average over these oscillationms.

To check the predictive power of the model we consider the limit in
which there is no external DC electric field present, and at first consider
a single mode. In this limit the problem reduces to the weak cold beam-
plasma interaction investigated by Shapiro, et al.’and by O'Neil, et al.®

Figure 1 shows the comparison between the spatially averaged model
(continuous curve) and the results of O'Neil, et al.® (dashed curve).

In the upper portion of Fig. 1 one plots the time evolution of the scaled

wave amplitude Yu. It is seen that the two results overlap in the linear
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regime and reach saturation at the same time. As expected, after saturation
the spatially averaged model yields a constant amplitude, while the computer
simulation predicts amplitude oscillations about the saturation level of the
averaged model. On the bottom of Fig. 1 one observes the time evolution of
the scaled average momentum of the beam, and shows that the beam slows down
as the instability saturates.

Although the beam momentum is converted into wave momentum, as illus-
trated in Fig. 1, this effect is not the primary reason for the saturation.
To isolate the physics behind the saturation we have considered the evolution
of the system when one legislates that S = 0 for all t, i.e., one does not
allow the beam to acquire a thermal spread as it recoils. The resulting
behavior is shown in Fig. 2, where one observes that the instability does
not saturate in this case. This result shows that it is crucial to retain
the thermal spreading of the beam in order to correctly describe the satura-
tion illustrated in Fig. 1.

The proper physical interpretation of the saturation is that as the
beam acquires a thermal spread the hydrodynamic instability evolves into
the kinetic instability. The consequence of this transition is illustrated
in Fig. 3, where one observes the dependence of the growth rate T on p for
a cold beam, S = 0, and for a slightly warm beam, S = 0.5. It is seen from
Fig. 3 that as the beam acquires a thermal spread the region of unstable
behavior shrinks and moves toward larger values of p. However, the conser-
vation of momentum constraint requires that the momentum p must decrease as
a function of time. Thus, as the beam recoils it eventually passes through
the marginally stable point (i.e., I' = 0) bringing about the saturation.

For completeness we exhibit in Fig. 4 the self-consistent evolution

of the kinetic energy K, thermal spread S, and the frequency shift Q@ = Re(w)
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corresponding to the solid curve of Fig. 1. It should be noted that the
kinetic energy is measured relative to the initial wave frame, hence the beam
recoil shows up as an increase in K,

Another topic which can be investigated by the formalism is the genera-
tion of sidebands due to wave-particle-wave interactions. This interaction
has been recently identified as the fundamental process governing the excita-
tion of the well-known trapped particle sidebands. The essence of this
interaction is that a wave having a certain phase velocity can cause a non-
local distortion in the spatially averaged velocity distribution function,
thus modifying the damping or growth of other modes having different phase
velocities. Such a process can be present in the beam-plasma interaction, as
is illustrated in Fig. S.

In Fig. 5 we exhibit the time evolution of the amplitude of two modes,

v,

for a fixed choice of k2/k1 = 0.7, and for different values of dispersion,

/Ez,obtained from the self-consistent numerical solution of Eqgs. (39)-(42)

i.e., &, =2.0, 1.5, 0.5. The scaling wavenumber k1 corresponds in this

2
case to the fastest growing mode in the linear stage of the beam-plasma
instability. It is seen in Fig. 5 that early in time both modes exhibit
growth for all values of 62. This is the linear stage during which the beam
is not significantly perturbed. However, in the nonlinear regime one
observes different responses for different values of 62. For 62 = 2.0 one
has the more familiar situation arising due to the heating of the beam by
the growing waves. As the beam acquires a thermal spread (mainly due to the

growth of kl) mode k, undergoes the transition from hydrodynamic to kinetic

Z

behavior, thus resulting in its damping. The final state consists of the

saturated fastest growing mode kl'
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It is seen in Fig. 5 that as the dispersion is decreased to 62 = 0.5,
the fastest growing mode undergoes a continuous transition that results in
its eventual decay, i.e., a sideband decay whereby the energy in mode k1
is transferred to the neighboring mode kz. This is the type of decay

10 -14 and

responsible for the excitation of the trapped particle sidebands
should be noted that it has nothing to do with the parametric couplings
previously invoked?! to explain such a behavior.

To better understand the reason behind the nonlinear decay of the
fastest growing mode for §, = 0.5, one should consider the self-consistent
modification in both the real and imaginary parts of Wy and Wy The
relevant time evolution of Qj = Re(wj) and Fj = Im(wj) is shown in Fig. 6
for 6, = 0.5. Early in time I, is slightly larger than I, and le, l<le,l.

As the beam acquires a thermal spread, Ty decreases to zero as it would
normally do just before saturation for the single mode problem. However,
because mode k2 is now present the beam continues to recoil and spread,

thus causing mode k1 to overshoot the marginally stable point (Fl = 0) and
eventually enter the region of damping. As mode k1 damps, the recoil of

the beam is slowed down thus preventing mode k2 from crossing its marginally
stable point (i.e., FZ = 0). Also, from the scaling of Eq.(41) one observes

that for a fixed thermal spread S, mode k, samples an effective thermaliza-

2
tion which is 0.5 smaller than that seen by kl‘ As a consequence, ﬂl
suffers a much greater change from its linear value :than Qz, as is seen on the
bottom of Fig. 6.

The present model can describe also the cascading of the spectrum to
lower phase velocities (higher k). This effect is expected to be responsible

for the long term slowing down of the beam and its final merger with the

distribution function of the background plasma. To isolate this effect we
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consider two modes of widely spaced phase velocities 52 = 5.0, kz/kl = 0.7,
and legislate that the initial beam velocity lies between them, i.e.,

p(0) = 2.0. In this case kl corresponds to a mode which is initially stable
while kz is slightly unstable, as predicted from Fig. 3 for S = 0. The
corresponding evolution of the wave amplitudes is illustrated on the top
part of Fig. 7, where it is seen that kz grows initially, saturates early in
time and eventually decays. As mode k2 decays one observes that mode k1 is
excited. The reason for the late excitation of mode kl is that the satura-
tion of k2 causes the beam to recoil, as indicated on the bottom portion of
Fig. 7. As p is reduced, mode kl enters the region of growth (as in Fig. 3),

thus bringing about the cascading to lower wavenumbers.




“2%.

IV. CLAMPING BEHAVIOR

We proceed to consider the behavior of the beam when an external
DC electric field is present. In addition to the strength of the DC field Ei
one needs to legislate at T = 0 the momentum of the beam p(0), its initial
velocity spread S(0), and the initial amplitude of the various modes, uk(O).

Figure 8 illustrates the time evolution of the wave amplitude and beam
momentum for a case in which a cold beam interacts with a single mode having
a relatively small initial amplitude, i.e., ul(O) = 1.0 % 1673, plo) = - 5.0,
S(0) = 0, E?= 1.0. It is seen in Fig. 8 that for these parameters the beam
is able to run through the phase velocity of the cavity resonance while
experiencing only a slight recoil. This small recoil arises because for
P < O the beam drives the cavity mode unstable (as in Fig. 3). However,
since the beam is continuously accelerated by the external DC field its
velocity eventually becomes larger than the phase velocity of the cavity
mode, hence shutting-off the instability. For small initial noise levels
and large DC fields the process consists of a runaway beam radiating energy
into a cavity mode for a finite time and proceeding to increase its velocity
until it encounters a new resonance with another mode, thus repeating the
cycle. This behavior would show up experimentally in the form of a cascade
in the spectrum of the observed radiation toward lower frequencies.

An interesting phenomenon occurs when either £ is decreased or ul(O) is
increased. By decreasing Zrone increases the time of interaction between
the runaway beam and the cavity mode, while by increasing ul(O) the absolute
amplitude of the wave can be increased. Both of these changes can make the
rate of momentum transfer to the wave comparable to the magnitude of £, thus
preventing the beam from running away in velocity.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>